V. 3 Ableitung verketteter Funktionen

Lücken ausgefüllt

Einstieg / Idee:

Auch bei verketteten Funktionen sind Anstieg, Extremwerte, Tangenten usw. wichtig. Wie erhält man die Ableitung von verketteten Funktionen?

Beispielsweise:

- a) (Wdh) Gib die Funktion f(x) = u(v(x)) an, wenn gilt: $u = x^2$ und v = 3x + 4
- b) Bilde die Ableitung von u und v
- c) Bilde nun die Ableitung von f

Lösung:

a)

$$f(x) = (3x + 4)^2$$

b)

$$u'(x) = 2x \qquad v'(x) = 3$$

c)

1. Idee: Ableitung genauso, wie bei $p(x) = x^2$

$$f_1'(x) = 2 \cdot (3x + 4)$$

$$f_1'(x) = 6x + 8$$

2. Idee: Mit binomischer Formel zuerst in eine Summe umwandeln (*Vorteil: Nur noch Summenformel anwenden!*)

$$f(x) = 9x^2 + 24x + 16$$

$$f_2'(x) = 18x + 24$$

Lösungen sind nicht gleich! Aber: Welche stimmt?

Die zweite Lösung muss richtig sein, da wir nur bisher bekanntes angewendet haben, bei der 1. Idee haben wir etwas Neues probiert...

Vergleicht die Lösung von Idee 1 und Idee 2 genau! Um welchen Faktor unterscheiden sich f_1' und f_2' ? Entdeckst du den Faktor in der Funktion f?

$$f_2' = 3 \cdot f_1'$$

Das ist die Ableitung von v.

Merke (Kettenregel):

Ist $f = u \circ v$ die Verkettung der differenzierbaren Funktionen u und v, dann gilt: f ist ebenfalls differenzierbar mit

$$f'(x) = u'(v(x)) \cdot v'(x)$$

v'(x) nennt man Nachdifferenzieren.

In Worten:

Die Ableitung einer Funktion ist die Ableitung der äußeren Funktion angewendet auf die unveränderte innere Funktion mal die Ableitung der inneren Funktion.

Beweis auf der nächsten Seite

Beweis (besteht aus vielen Tricks):

Hinweis vorweg: x_0 ist die Stelle, an der wir die Funktion differenzieren wollen. Es gilt:

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} \cdot \frac{v(x) - v(x_0)}{\underbrace{v(x) - v(x_0)}_{geschickt \ mit \ 1}}_{multipliziert}$$

Umsortieren bei den Brüchen liefert:

$$= \frac{f(x) - f(x_0)}{v(x) - v(x_0)} \cdot \frac{v(x) - v(x_0)}{x - x_0}$$

Trick: Schreibe für v(x) = y und $v(x_0) = y_0$ dann gilt:

$$= \frac{u(y) - u(y_0)}{y - y_0} \cdot \underbrace{\frac{y - y_0}{x - x_0}}_{Trick: hier y und y_0}$$

$$= \frac{u(y) - u(y_0)}{y - y_0} \cdot \frac{v(x) - v(x_0)}{x - x_0}$$

Bilde Ableitung:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

Aufspaltung in zwei Grenzwerte:

$$= \lim_{y \to y_0} \frac{u(y) - u(y_0)}{\underbrace{y - y_0}_{\to u'(y_0)}} \cdot \lim_{x \to x_0} \frac{v(x) - v(x_0)}{\underbrace{x - x_0}_{\to v'(x_0)}}$$

$$= u'(y_0) \cdot v'(x_0)$$

Ersetzt man wieder $y_0 = v(x_0)$ liefert die Formel aus dem Merke-Eintrag:

$$f'(x_0) = u'(v(x_0)) \cdot v'(x_0)$$

Beispiele (aus letzter Stunde):

a) $h(x) = \sqrt{3x + 4}$ Wurzel in Potenzschreibweise umwandeln liefert: $h(x) = (3x+4)^{\frac{1}{2}}$

Anwendung der Kettenregel, Ableitung v. Potenzfunktion, neuer Exponent= alter Exponent -1

$$h'(x) = \frac{1}{2} \cdot (3x + 4)^{-\frac{1}{2}} \cdot 3$$
$$h'(x) = \frac{3}{2 \cdot \sqrt{3x + 4}}$$

b)
$$i(x) = 3\sqrt{x} + 4$$

 $i(x) = 3(x)^{\frac{1}{2}} + 4$ Hier Summenregel!

$$i(x) = 3(x)^{\frac{1}{2}} + 4$$
 Hier Summenregel!
 $i'(x) = 3 \cdot \frac{1}{2} \cdot (x)^{-\frac{1}{2}} + 0$
 $i'(x) = \frac{3}{2\sqrt{x}}$

Übungen

```
S. 137

Nr. 2 a) b) c), d) g), h) i)

Nr. 3 a)

Nr. 4

Nr. 5 a) c) e) g)

Nr. 6 a) - d)

S. 138

Nr. 9 a) b)

Nr. 11

Nr. 12,

Nr. 13,

Nr. 14 + Nr. 15 (Knobelei)
```